Florida Springs

POCKET GUIDE
The Floridan Aquifer

Considered one of the most productive aquifers in the world, the Floridan Aquifer System covers all of Florida and portions of Alabama, South Carolina, and Georgia.
Much of Florida’s geology consists of limestone formations known as karst. Rainwater is naturally slightly acidic, dissolving Florida’s soluble limestone as it percolates through the ground’s surface, creating holes and fissures in the rock.

A karst landscape is characterized by the presence of sinkholes, springs, and conduits that create the Floridan Aquifer System.
Aquifer Confinement

The Floridan Aquifer may be confined or unconfined, depending on the presence or absence of a confining layer. A confining layer is a geological formation that limits aquifer recharge. In Florida, the confining layer is often a layer of fine sediment or clay.

In unconfined areas, rainwater enters the aquifer directly after percolating through well drained, sandy soils. This crucial process is known as aquifer recharge and is the primary method of replenishing groundwater.

An unconfined aquifer is great for recharge, but this is also where the aquifer is most vulnerable to contaminants entering our groundwater from human activities on the surface.
Springs

Springs are areas where pressure in the aquifer causes groundwater to flow from an opening in the land’s surface. There are 1,000+ freshwater springs in Florida.

Florida’s springs are categorized by the average amount of water that they discharge on a daily basis. These categories are known as magnitudes.

Florida has more first magnitude springs than any other state in the U.S.
The Importance of the Aquifer and Springs

Clean groundwater is vital for the future of Florida. A healthy aquifer and springs means a healthy future for our state.

The most recent USGS water report (2015) estimates that over 92% of Florida’s population rely on groundwater for their drinking water. That is just over 18 million people that depend on a healthy aquifer.

According to an economic impact assessment for the Florida State Park System, in 2019 Florida State Parks with springs had over 4 million visitors, with an economic impact of $370 million. Springs are an important part of tourism in Florida.

Countless Florida businesses, industries, and farms depend on a clean and plentiful groundwater supply.
Our Impact

Human activities at the land’s surface affect the **quality** of water and groundwater withdrawals impact the **quantity** of water in our aquifer and springs.

Fertilizers, human wastewater, and livestock waste are the primary sources of nitrogen loading from activities at the land’s surface. **Nitrates** from human activities may enter the Floridan Aquifer either directly through karst features like sinkholes, or after percolating through sandy soils into groundwater.

Increasing demand for groundwater reduces the quantity of water available to discharge from our springs and the source of water that Florida’s population relies on for drinking.
Tools for Springs Protection

In 2016, the Florida Legislature identified 30 “Outstanding Florida Springs” as part of the Springs and Aquifer Protection Act.

30 Outstanding Florida Springs

- Madison Blue Spring
- Volusia Blue Spring
- Homossassa Spring Group
- DeLeon Spring
- Rainbow Spring Group
- Falmouth Spring
- Jackson Blue Spring
- Silver Glen Springs
- Wekiwa Spring
- Silver Springs
- Gemini Springs
- Wakulla Spring
- Fanning Spring
- Troy Springs
- Wacissa Spring Group
- Crystal River (Including Kings Bay Springs)

- Lafayette Blue Spring
- Peacock Springs
- Devil’s Ear Spring
- Ichetucknee Spring Group
- Poe Spring
- Weeki Wachee Spring Group
- Hornsby Spring
- Treehouse Spring
- Columbia Spring
- Manatee Spring
- Alexander Spring
- Gainer Spring Group
- Rock Springs
- Chassahowitzka Spring Group
REQUIRED BY THE 2016 SPRINGS AND AQUIFER PROTECTION ACT, FDEP ESTABLISHED BASIN MANAGEMENT ACTION PLANS (BMAPS) TO ADDRESS WATER QUALITY RESTORATION FOR FLORIDA’S WATER BODIES. THESE PLANS ARE FOCUSED ON REDUCING NITROGEN POLLUTION THAT IS IMPACTING THE WATER QUALITY. EACH BMAP MUST IDENTIFY THE SOURCES OF NITROGEN POLLUTION, ESTABLISH A TOTAL MAXIMUM DAILY LOAD (TMDL) FOR POLLUTANTS, AS WELL AS PROJECTS AND STRATEGIES TO IMPROVE WATER QUALITY IN THE REGION. ALL 30 OUTSTANDING FLORIDA SPRINGS HAVE BMAPS AND TMDLS. FLORIDA’S BMAP AREAS ARE SHOWN BELOW.

FLORIDA IS SEPARATED INTO 5 WATER MANAGEMENT DISTRICTS, WHICH BY FLORIDA LAW (SECTION 373.042(1)) ARE RESPONSIBLE FOR ESTABLISHING MINIMUM FLOWS AND LEVELS (MFLS) NECESSARY TO PROTECT FLORIDA’S WATER BODIES. WATER BODIES THAT ARE BELOW THEIR MINIMUM FLOW AND LEVEL, OR ARE PROJECTED TO FALL BELOW THEIR MFL WITHIN 20 YEARS, MUST BE ISSUED A RECOVERY OR PREVENTION STRATEGY BY THEIR WATER MANAGEMENT DISTRICT. ALL 30 OUTSTANDING FLORIDA SPRINGS HAVE MFLS. FLORIDA’S FIVE WATER MANAGEMENT DISTRICTS ARE SHOWN BELOW.
Blue Water Audit

The Howard T. Odum Florida Springs Institute created the Blue Water Audit to quantify the impact of human activities on the Floridan Aquifer, and to help others understand the problems.

Using existing data from a variety of sources, the Blue Water Audit estimates nitrogen loading and groundwater withdrawals for the Florida Springs Region. These estimates are used to assign Aquifer Footprints – a Floridan Aquifer Nitrogen Footprint (water quality) and a Floridan Aquifer Groundwater Footprint (water quantity).

The following pages will show visualizations of the Blue Water Audit’s nitrogen and groundwater withdrawal footprints for the entire Florida Springs Region, as well as BWA profiles for four out of the five water management districts that serve the Florida Springs Region, with BMAP estimated nitrate sources for an Outstanding Florida Spring within each District.
Blue Water Audit
Year 2
Floridan Aquifer
Groundwater Withdrawal Footprint

FLORIDAN AQUIFER
GROUNDWATER FOOTPRINT

MINIMAL
Estimated to withdraw less than 10,000 gallons per acre, per year from the Floridan Aquifer.

MODERATE
Estimated to withdraw 10,000 - 30,000 gallons per acre, per year from the Floridan Aquifer.

HIGH
Estimated to withdraw 30,000 - 60,000 gallons per acre, per year from the Floridan Aquifer.

SEVERE
Estimated to withdraw greater than 60,000 gallons per acre, per year from the Floridan Aquifer.
Blue Water Audit
Year 2
Floridan Aquifer
Nitrogen Footprint

FLORIDAN AQUIFER
NITROGEN FOOTPRINT

ZERO
No nitrogen input into the Floridan Aquifer. Discharge area.

MINIMAL
Estimated input of less than 0.5 pounds of nitrogen per acre, per year into the Floridan Aquifer.

MODERATE
Estimated input of 0.5 to 3.5 pounds of nitrogen per acre, per year into the Floridan Aquifer.

HIGH
Estimated input of 3.5 to 15 pounds of nitrogen per acre, per year into the Floridan Aquifer.

SEVERE
Estimated input greater than 15 pounds of nitrogen per acre, per year into the Floridan Aquifer.

There are more than 200 springs within the SWFWMD, including 5 first magnitude, Outstanding Florida Springs groups. Collectively, these OFS spring groups discharge more than one billion gallons of groundwater per day.

Using Rainbow Springs as an example of a well-known Outstanding Florida Spring within a state park in this WMD, below is a graph of the sources of estimated nitrogen loading to groundwater for the Rainbow Springs BMAP area. Cattle Farms, Onsite Sewage Treatment and Disposal Systems, Horse Farms, and Farm Fertilizers are the biggest sources of nitrogen loading for the Rainbow Springs BMAP area.
According to USGS data for 2015, an estimated **773.08 million gallons per day** of fresh groundwater were withdrawn within the SWFWMD in 2015. Below you can find the breakdown of source-specific estimated water withdrawals, indicating that **Public Supply** was the largest, **Agricultural Irrigation** the second largest, and **Commercial - Industrial - Mining Self-Supplied** wells the third largest fresh groundwater consumer within this WMD.

On the right is the Blue Water Audit Groundwater Withdrawal Footprint visualization for this WMD, with use categories indicated below.
Suwannee River Water Management District

There are more than 300 documented springs in the SRWMD. Of Florida’s 33 first-magnitude springs, 21 are within the SRWMD. This district’s territory includes over 7,640 square miles, with an estimated population of 340,000 people.

Using Ichetucknee as an example of a well-known Outstanding Florida Spring within a state park in this WMD, below is a graph of the sources of estimated nitrogen loading to groundwater for the Ichetucknee Springshed within the Santa Fe BMAP area. Farm Fertilizer, Livestock Waste, and Atmospheric Deposition are the biggest sources of nitrogen loading for the Ichetucknee springshed within the Santa Fe BMAP area.

SRWMD - Santa Fe BMAP: Ichetucknee Springshed
Estimated Nitrogen Loading to Groundwater by Source

- Farm Fertilizer: 36%
- Livestock Waste: 15%
- Atmospheric Deposition: 20%
- Septic Systems: 10%
- Urban Turfgrass: 5%
- Sports Turfgrass: 5%
- Wastewater Treatment Facility: 0%

On the right is the Blue Water Audit Floridan Aquifer Nitrogen Footprint visualization for this District, with use categories indicated below.
According to USGS data for 2015, an estimated **222.54 million gallons per day** of fresh groundwater were withdrawn within the SRWMD in 2015. Below you can find the breakdown of source-specific estimated water withdrawals, indicating that **Agricultural Irrigation** was the largest, **Commercial-Industrial-Mining Self-Supplied** wells the second largest, and **Domestic Self-Supplied** wells the third largest fresh groundwater consumer within this WMD.

On the right is the Blue Water Audit Groundwater Withdrawal Footprint visualization for this WMD, with use categories indicated below.

There are 148 known springs and 1,400 lakes in the SJRWMD. This WMD covers 12,283 square miles. The main water body is the longest river entirely contained in the state of Florida, the St. Johns River.

Using Silver Springs as an example of a well-known Outstanding Florida Spring within a state park in this WMD, below is a graph of the sources of estimated nitrogen loading to groundwater for the Silver Springs BMAP area. **Onsite Sewage Treatment and Disposal Systems, Cattle Farms, and Farm Fertilizer** are the biggest sources of nitrogen loading for the Silver Springs BMAP area.

On the right is the Blue Water Audit Floridan Aquifer Nitrogen Footprint visualization for this District, with use categories indicated below.
According to USGS data for 2015, an estimated **867.73 million gallons per day** of fresh groundwater were withdrawn within the SJRWMD in 2015. Below you can find the breakdown of source-specific estimated water withdrawals, indicating that **Public Supply** was the largest, **Agricultural Irrigation** the second largest, and **Commercial - Industrial - Mining Self-Supplied** wells the third largest fresh groundwater consumer for this WMD.

SJRWMD - Fresh Groundwater Withdrawals (2015)

- **Public Supply**: 21.8%
- **Agricultural Irrigation**: 8.7%
- **Commercial - Industrial - Mining Self-Supplied**: 59.1%
- **Recreational Landscape Irrigation**:
- **Domestic Self-Supplied**:
- **Power Generation**:

On the right is the Blue Water Audit Groundwater Withdrawal Footprint visualization for this WMD, with use categories indicated below.
Northwest Florida Water Management District

Counties: Bay, Calhoun, Escambia, Franklin, Gadsden, Gulf, Holmes, Jackson, Jefferson (western half), Leon, Liberty, Okaloosa, Santa Rosa, Wakulla, Walton, and Washington.

There are more than 250 documented springs in the NWFWMD. This district covers 11,305 square miles and serves an estimated population of 1.37 million residents. Within this district lie several major hydrologic basins, including Apalachicola River and Bay, Pensacola Bay System, and St. Marks River Basin (includes the Wakulla River).

Using Wakulla Springs as an example of a well-known Outstanding Florida Spring within a state park in this WMD, below is a graph of the sources of estimated nitrogen loading to groundwater for the Wakulla Springs BMAP area. **Onsite Sewage Treatment and Disposal Systems, Atmospheric Deposition, and Farm Fertilizer** are the biggest sources of nitrogen loading for the Wakulla BMAP area.

NWFWMD - Upper Wakulla River and Wakulla Springs BMAP

Estimated Nitrogen Loading to Groundwater by Source

- **Onsite Sewage Treatment and Disposal System:** 34%
- **Atmospheric Deposition:** 27%
- **Farm Fertilizer:** 21%
- **Urban Turfgrass:** 6%
- **Wastewater Treatment Facility:** 4%
- **Livestock Waste:** 3%
- **Sports Turfgrass:** 1%

On the right is the Blue Water Audit Floridan Aquifer Nitrogen Footprint visualization for this District, with use categories indicated below.

FLORIDAN AQUIFER NITROGEN FOOTPRINT

- **ZERO**
 - No nitrogen input into the Floridan Aquifer. Discharge area.

- **MINIMAL**
 - Estimated input of less than 50 pounds of nitrogen per acre, per year into the Floridan Aquifer.

- **MODERATE**
 - Estimated input of 50 to 350 pounds of nitrogen per acre, per year into the Floridan Aquifer.

- **HIGH**
 - Estimated input of 35 to 15 pounds of nitrogen per acre, per year into the Floridan Aquifer.

- **SEVERE**
 - Estimated input greater than 15 pounds of nitrogen per acre, per year into the Floridan Aquifer.
According to USGS data for 2015, an estimated **241.46 million gallons per day** of fresh groundwater were withdrawn within the NWFWMD in 2015. Below you can find the breakdown of source-specific estimated water withdrawals, indicating that **Public Supply** was the largest groundwater consumer, **Agricultural Irrigation** the second largest, and **Commercial - Industrial-Mining Self-Supplied** wells the third largest fresh groundwater consumer within this WMD.

On the right is the Blue Water Audit Groundwater Withdrawal Footprint visualization for this WMD, with use categories indicated below.
Save Our Springs

This Florida Springs Pocket Guide was created to help people better understand Florida’s aquifer and springs, the challenges they face, and the tools available for their protection.

Florida’s 1,000+ springs are an integral part of Florida’s environment and economy. Florida springs provide a window into the health of Florida’s groundwater, the source of drinking water for more than 90% of Florida residents and tourists. This Pocket Guide provides basic information about our springs and the modern challenges they face: groundwater withdrawals and nitrogen loading.

Basin Management Action Plans (BMAPs) with Total Maximum Daily Loads (TMDLs) are the current tools available to address excessive nutrient loading of our Outstanding Florida Springs. At this time, Minimum Flows and Levels (MFLs) are the tools for addressing excessive groundwater withdrawals.

By understanding the basics of springs science and protection in Florida, together we can do more to Save Our Springs.